[Gobi, 2(5): May, 2013]

| JESRT

ISSN: 2277-9655

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
DAC: Generic and Automatic Address Configuration for Data Center Networks
P. Gobi"!, SArulselvi?, Dr T.Kirankumar?

"123 Bharath University, Chennai, India
rpgobi55@gmail.com

Abstract
DAC, a generic and automatic Data center Addres¥iQuration system. With an automatically generated

blueprint that defines the connections of serveid switches labeled by logical Ids, e.g., IP adskesDAC first
learns the physical topology labeled by device i®g,, MAC addresses. Then, at the core of DAGsiglévice-to-
logical ID mapping and malfunction detection. DAGkas an innovation in abstracting the device-tacklglD
mapping to the graph isomorphism problem and sdlve&h low time complexity by leveraging the dtes of
data center network topologies. Its malfunctioredgébn scheme detects errors such as device anéhilnres and
mis-wirings, including the most difficult case wkemis-wirings do not cause any node degree chahgehave
evaluated DAC via simulation, implementation, argeximents.

Keywords : Address Configuration, Data center networks(DZ§saph isomorphism.

I ntroduction

In this paper, we have designed, evaluated,
and implemented DAC, a generic and automatic Data
center Address Configuration system. DAC, a
generic and automatic Data center Address
Configuration system. With an automatically
generated blueprint that defines the connections of
servers and switches labeled by logical Ids, éRy.,
addresses, DAC first learns the physical topology
labeled by device IDs, e.g., MAC addresses. Then, a
the core of DAC is its device-to-logical ID mapping
and malfunction detection. DAC makes an innovation
in abstracting the device-to-logical ID mappinghe
graph isomorphism problem and solves it with low
time complexity by leveraging the attributes ofalat
center network topologies. Its malfunction detettio
scheme detects errors such as device and linkdailu
and mis-wirings, including the most difficult case
where mis-wirings do not cause any node degree
change. We have evaluated DAC via simulation,
implementation, and experiments. The requirements
specification is a technical specification of
requirements for the software products. It is tingt f
step in the requirements analysis process it ttas
requirements of a particular software system
including functional, performance and security
requirements. The requirements also provide usage
scenarios from a user, an operational and an
administrative perspective. The purpose of software
requirements specification is to provide a detailed
overview of the software project, its parameterd an
goals. This describes the project target audience a
its user interface, hardware and software

http: // www.ijesrt.com

requirements. It defines how the client, team and
audience see the project and its functionality.aDat
center networks encode locality and topology
information into their server and switch addredses
performance and routing purposes. For this reason,
the traditional address configuration protocolshsuc
as DHCP require a huge amount of manual input,
leaving them error-prone. In this paper, we present
DAC, a generic and automatic Data center Address
Configuration system. With an automatically
generated blueprint that defines the connectidns o
servers and switches labeled by logical Ids, éRy.,
addresses, DAC first learns the physical topology
labeled by device IDs, e.g., MAC addresses. Taen,
the core of DAC is its device-to-logical ID mapgin
and malfunction detection. DAC makes an innovation
in abstracting the device-to-logical ID mapping to
the graph isomorphism problem and solves it with
low time complexity by leveraging the attributes of
data center network topologies. Its malfunction
detection scheme detects errors such as device and
link failures and mis-wirings, including the most
difficult case where miswirings do not cause any
node degree change. We have evaluated DAC via
simulation, implementation, and experiments. Our
simulation results show that DAC can accurately
find all the hardest-to-detect malfunctions and can
auto configure a large data center with 3.8 million
devices in 46 s. In our implementation, we
successfully auto configure a small 64-server BCube
network within 300 ms and show that DAC is a
viable solution for data center auto configuration.

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

[Gobi, 2(5): May, 2013]

CCB (communication channel building): from DAC
manager broadcasts the message with level 0 to the
last node in the network gets its level; timedhére

is no change in neighboring nodes for at leaf npdes
TC (physical topology collection): from the firsgdf
node sends out its TCM to DAC manager receives
the entire network topology; mapping: device-to-
logical ID mapping time including the I/O time; LD
(logical IDs dissemination): from DAC manager,
sends out the mapping information to all the device
to get their logical IDs.

The newly proposed data center network
(DCN) structures go one step further by encoding
their topology information into their logical IDs.
These logical IDs can take the form of IP address,
MAC address, or even newly invented IDs. These
structures then leverage the topological infornmatio
embedded in the logical IDs for scalable and effiti
routing. For example, Portland switches choose a
routing path by exploiting the location informatioh
destination MAC. BCube servers build a source
routing path by modifying one digit at one stepdzhs
on source and destination BCube IDs. For all the
cases above, we need to configure the logical Ids,
which may be IP or MAC addresses or BCube, for all
the servers and switches. Meanwhile, in the physica
topology, all the devices are identified by their
unique device IDs, such as MAC addresses.

When the channel is built, the next step is toemll
the physical topology. For this, we introduce a
Physical topology Collection Protocol (PCP). In RCP
the physical topology information, i.e., the
connection information between each node is
propagated bottom—up from the leaf devices to the
root (i.e., DAC manager) layer by layer. After is
collected by DAC manager, we go to the device-to-
logical ID mapping module. Device-to-Logical ID
mapping after has been collected; we come to device
to-logical ID mapping, which is a key component of
DAC. As introduced in Section I, the challenge is
how to have the mapping reflect the topological
relationship of these devices. To this end, we steyi

a fast one-to-one mapping engine, to realize this
functionality.

We consider and categorize three
malfunction types in data centers: node, link, and
mis-wiring. The first type occurs when a given sgrv
or switch breaks down from hardware or software
reasons, causing it to be completely unreachalde an
disconnected from the network. The second one
occurs when the cable or network card is broken or
not properly plugged in so that the connectivity
between devices on that link is lost. The third one
occurs when wired cables are different from theose i
the blueprint. These malfunctions may introduce
severe problems and downgrade the performance.

http: // www.ijesrt.com

ISSN: 2277-9655

Materialsand Methods
Existing System

There are very few existing solutions, and
none of them can meet all the requirements abave. |
this paper, we address these problems by proposing
DAC—a generic and automatic Data center Address
Configuration system for the existing and futuréada
center networks. To make our solution generic, we
assume that we only have a blueprint of the to-be-
configured data center network, which defines how
the servers and switches are connected and labels
each device with a logical ID. The blueprint can be
automatically generated because all the existirig da
center network structures are quite regular ancbean
described either recursively or iteratively.
Proposed System

The newly proposed data center network
(DCN) structures go one step further by encoding
their topology information into their logical IDs.
These logical IDs can take the form of IP address,
MAC address, or even newly invented IDs. These
structures then leverage the topological infornmatio
embedded in the logical IDs for scalable and effiti
routing. For example, Portland switches choose a
routing path by exploiting the location informatioh
destination MAC. BCube servers build a source
routing path by modifying one digit at one stepdzhs
on source and destination BCube IDs. For all the
cases above, we need to configure the logical Ids,
which may be IP or MAC addresses or BCube, for all
the servers and switches. Meanwhile, in the physica
topology, all the devices are identified by their
unique device IDs, such as MAC addresses.
Event Scheduler

This section talks about the discrete event
schedulers of NS. As described in the Overview
section, the main users of an event scheduler are
network components that simulate packet-handling
delay or that need timers. Figure (a) shows each
network object using an event scheduler. Note dhat
network object that issues an event is the one who
handles the event later at scheduled time. Alse not
that the data path between network objects is
different from the event path. Actually, packetg ar
handed from one network object to another using
send(Packet* p) {target ->recv(p)}; method of the
sender and recv(Packet*, Handler* h = 0) method of
the receiver.

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

[Gobi, 2(5): May, 2013]

Dara Path §

/ﬂ\

- - f—

o[uid_ rest hander_ | (Fandlers))

/'/r _H\/\(/ . Newwork
P " j r

/ kead = \\‘ \B_M_e'it//

Event |
Scheduler -
N B
. e
\x_ //, \\1\:1_3:1:
—

vata Path 3

—
. ~,
|/ handler))
o i_rom bandr]« Nework |
= = = ., Object
"-\-__,_a‘/
Data Dath J

Figure (a) Discrete Event Scheduler

NS has two different types of event
schedulers implemented. These are real-time and
non-real-time schedulers. For a non-real-time
scheduler, three implementations (List, Heap and
Calendar) are available, even though they are all
logically perform the same. This is because of
backward compatibility: some early implementation
of network components added by a user (not the
original ones included in a package) may use a
specific type of scheduler not through public
functions but hacking around the internals. The
Calendar non-real-time scheduler is set as theutlefa
The real-time scheduler is for emulation, whiclvwail
the simulator to interact with a real network.
Currently, emulation is under development although
an experimental version is available. The followisg
an example of selecting a specific event scheduler:

set ns [new Simulator]
$ns use-scheduler Heap

Another use of an event scheduler is to
schedule simulation events, such as when to start a
FTP application, when to finish a simulation, or fo
simulation scenario generation prior to a simutatio
run. An event scheduler object itself has simutatio
scheduling member functions such as at time "string
that issue a special event called AtEvent at a
specified simulation time. An "AtEvent" is actually
child class of "Event", which has an additional
variable to hold the given string. However, it is
treated the same as a normal (packet related) event
within the event scheduler. When a simulation is
started, and as the scheduled time for an AtEvent i
the event queue comes, the AtEvent is passed to an
"AtEvent handler” that is created once and hanalles
AtEvents, and the OTcl command specified by the
string field of the AtEvent is executed. The foliogy
is a simulation event scheduling line added version
the above example.

http: // www.ijesrt.com

ISSN: 2277-9655

set ns [new Simulator]
$ns use-scheduler Heap
$ns at 300.5 “complete_sim"
proc complete_sim {3 {

}

ou might noticed from the above example that aétim
"string" is a member function of the Simulator atije
(set ns [new Simulator]). But remember that the
Simulator object just acts as a user interface, iand
actually calls the member functions of network
objects or a scheduler object that does the rdal jo
Followings are a partial list and brief descriptioh
Simulator object member functions that interface
with scheduler member functions:

Simulator instproc now
Simulator instproc at args
Simulator instproc at-now args
Simulator instproc after n args

Simulator instproc run args # start scheduler

Simulator instproc halt

Network Components
This section talks about the NS components,

mostly compound network components. The root of
the hierarchy is the TclObject class that is the
superclass of all OTcl library objects (scheduler,
network components, timers and the other objects
including NAM related ones). As an ancestor cldss o
Tcl Object, Ns Object class is the superclass bf al
basic network component objects that handle packets
which may compose compound network objects such
as nodes and links. The basic network components
are further divided into two subclasses, Connector
and Classifier, based on the number of the possible
output data paths. The basic network objects that
have only one output data path are under the
Connector class, and switching objects that have
possible multiple output data paths are under the
Classifier class.
(a)Node and Routing

A node is a compound object composed of a
node entry object and classifiers as shown in
Figure(b) There are two types of nodes in NS. A
unicast node has an address classifier that does
unicast routing and a port classifier. A multicast

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

z return scheduler's n
schedule execution
schedule execution

schedule execution

stop (pause) schedu

[Gobi, 2(5): May, 2013]

node, in addition, has a classifier that classify
multicast packets from unicast packets and a
multicast classifier that performs multicast rogtin

/ e A.d-lr Clessifizr v
i /clam _r‘}//\

Lml‘—-(

; mm_'u\.rl—\mﬁ
Lunk \ E_ :

Figure(b) Node (Unicast and M ulticast)

In NS, Unicast nodes are the default nodes. To
create Multicast nodes the user must explicitlyifpot
in the input OTcl script, right after creating a
scheduler object, that all the nodes that will be
created are multicast nodes. After specifying theen
type, the user can also select a specific routing
protocol other than using a default one.

(b)Unicast

- $ns rtproto type

- type: Static, Session, DV, cost, multi-path
(c)Multicast

- $ns multicast (right after set $ns [new Schedyler
- $ns mrtproto type

- type: CtrMcast, DM, ST, BST

(d)Link

A link is another major compound object in NS.
When a user creates a link using a duplex-link
member function of a Simulator object.One thing to
note is that an output queue of a node is actually
implemented as a part of simplex link object. Péske
dequeued from a queue are passed to the Delaytobjec
that simulates the link delay, and packets dropgted
a queue are sent to a Null Agent and are freec ther
Finally, the TTL object calculates Time To Live
parameters for each packet received and updates the
TTL field of the packet.

(e)Tracing

In NS, network activities are traced around
simplex links. If the simulator is directed to teac
network activities (specified using $ns trace-#dl or
$ns namtrace-all file), the links created after the
command will have the following trace objects
inserted as shown in Figure(c) Users can also
specifically create a trace object of type typeneein
the given src and dst nodes using the create-trace
{type file src dst} command.

http: // www.ijesrt.com

ISSN: 2277-9655

Link with Trace Ohjects

DeqT e Delay —-J TTL l—* RecyT e

E—P Agert/Noll

Figure(c) Inserting Trace Objects

When each inserted trace object (i.e. EnqT,
DeqT, DrpT and RecvT) receives a packet, it writes
to the specified trace file without consuming any
simulation time, and passes the packet to the next
network object. The trace format will be examined i
the General Analysis Example section.

Queue M onitor

Basically, tracing objects are designed to
record packet arrival time at which they are lodate
Although a user gets enough information from the
trace, he or she might be interested in what isgoi
on inside a specific output queue. For examplesea u
interested in RED queue behavior may want to
measure the dynamics of average queue size and
current queue size of a specific RED queue (i.edne
for queue monitoring). Queue monitoring can be
achieved using queue monitor objects and shoop
gueue objects as shown in Figure(d).

T: atl
LiliK Witd

SoopQiCit —w Dilav

—w—*SnoupQﬂn—r Queue —
.1 .

]
i

” ﬁ\w. Snoop)/Dropt-Lan Ageatll
!
!

i '

- Lo
“* Juenl onto:

Figure(d) Monitoring Queue

When a packet arrives, a snoop queue object
notifies the queue monitor object of this eventeTh
gueue monitor using this information monitors the
queue. A RED queue monitoring example is shown
in the RED Queue Monitor Example section. Note
that snoop queue objects can be used in paralibl wi
tracing objects even though it is not shown in the
above figure.
(a)Packet Flow Example

Until now, the two most important network
components (node and link) were examined.
Figure(e) shows internals of an example simulation

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

[Gobi, 2(5): May, 2013]

network setup and packet flow. The network consist
of two nodes (n0 and nl) of which the network
addresses are 0 and 1 respectively. A TCP agent
attached to nO using port 0 communicates with a TCP
sink object attached to nl port 0. Finally, an FTP
application (or traffic source) is attached to eP
agent, asking to send some amount of data.

Figure(e) Packet Flow Example

Note that the above figure does not show the
exact behavior of a FTP over TCP. It only shows the
detailed internals of simulation network setup and
packet flow.
(b)Packet

A NS packet is composed of a stack of
headers, and an optional data space. As briefly
mentioned in the "Simple Simulation Example"
section, a packet header format is initialized when
Simulator object is created, where a stack of all
registered (or possibly useable) headers, sucheas t
common header that is commonly used by any
objects as needed, IP header, TCP header, RTP
header (UDP uses RTP header) and trace header, is
defined, and the offset of each header in the stack
recorded. What this means is that whether or not a
specific header is used, a stack composed of all
registered headers is created when a packet is
allocated by an agent, and a network object can
access any header in the stack of a packet it gsese
using the corresponding offset value.

Usually, a packet only has the header stack

(and a data space pointer that is null). Although a
packet can carry actual data (from an applicatipn)
allocating a data space, very few application and
agent implementations support this. This is bec#tuse
is meaningless to carry data around in a non-rerad-t
simulation. However, if you want to implement an
application that talks to another application crthes
network, you might want to use this feature with a
little modification in the underlying agent
implementation. Another possible approach would be
creating a new header for the application and

http: // www.ijesrt.com

ISSN: 2277-9655

modifying the underlying agent to write data reeeiv
from the application to the new header. The second
approach is shown as an example in a later section
called "Add New Application and Agent".

Trace Analysis Example

This section shows a trace analysis example.
Example(1) is the same OTcl script as the oneeén th
"Simple Simulation Example" section with a few
lines added to open a trace file and write traoeis t
For the network topology it generates and the
simulation scenario.To run this script download-"ns
simple-trace.tcl" and type "ns ns-simple-trace.at"
your shell prompt.

fffff i 1l=

H#Onen the MAM race fil
12 INAL race I1iE

FLAPEIL T

st nf [open out.nam wl

ins namtrace-sll §nf

#iipen the Trace fiie

set LTI

procedurs

glolbal ns ni ti
ins flush-trace
#Close the WAN trace file

HNAM on the trace £ile
EXEC DAt out.nsmm &
exit 0O

-3
Ean
Hecute

¥

Example(1). Trace Enabled Simple NS Simulation
Script

Running the above script generates a NAM
trace file that is going to be used as an inpiNAdM
and a trace file called "out.tr" that will be uded our
simulation analysis. Each trace line starts with an
event (+, -, d, r) descriptor followed by the siation
time (in seconds) of that event, and from and teno
which identify the link on which the event occurred
Look at Figure(c) in the "Network Components"
section to see where in a link each type of event i
traced. The next information in the line beforegfla
(appeared as "------ " since no flag is set) is jpack
type and size (in Bytes). Currently, NS implements
only the Explicit Congestion Notification (ECN) bit
and the remaining bits are not used. The next field
flow id (fid) of IPv6 that a user can set for edidw
at the input OTcl script. Even though fid field may
not used in a simulation, users can use this fiedd
analysis purposes. The fid field is also used when

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

[Gobi, 2(5): May, 2013]

specifying stream color for the NAM display. The
next two fields are source and destination address
forms of "nodeport”. The next field shows the
network layer protocol's packet sequence number.
Note that even though UDP implementations do not
use sequence number, NS keeps track of UDP packet
sequence number for analysis purposes. The lddt fie
shows the unique id of the packet.

Having simulation trace data at hand, all one
has to do is to transform a subset of the data of
interest into a comprehensible information and
analyze it. Down below is a small data transforomati
example. This example uses a command written in
perl called "column" that selects columns of given
input. To make the example work on your machine,
you should download “column" and make it
executable (i.e. "chmod 755 column"). Followingis
tunneled shell command combined with awk, which
calculates CBR traffic jitter at receiver node (n3)
using data in "out.tr", and stores the resultintada
“jitter.txt".

ISSN: 2277-9655

The following is the explanation of the
script above. In general, an NS script starts with
making a Simulator object instance.set ns [new
Simulator]: generates an NS simulator object
instance, and assigns it to variable ns (italicasisd
for variables and values in this section). Whas thi
line does is the following:
Initialize the packet format (ignore this for now)
Create a scheduler (default is calendar scheduler)
Select the default address format (ignore this for
now)The "Simulator" object has member functions
that do the following:

1. Create compound objects such as nodes and links
(described later)

2.Connect network component objects created (ex.
attach-agent)

3.Set network component parameters (mostly for

compound objects)

4.Create connections between agents (ex. make
connection between a "tcp" and "sink")

5.Specify NAM display options Etc.

cat out.tr | grep " 2 3 cbr " | grep r | columd@ | awk {dif M@ -oldBeif(dd-f@)adibrs lard(difr si@ulation setup
{printf("%d\t%f\n", $2, ($1 - old1) / dif); old1l $1; old2 = $Apefejiter.tet as plumbing functions in the Overview

This shell command selects the "CBR packet receive"
event at n3, selects time (column 1) and sequence
number (column 10), and calculates the difference
from last packet receive time divided by differemce
sequence number (for loss packets) for each sequenc
number. The following is the corresponding jitter
graph that is generated using gnuplot. The X axis
show the packet sequence number and the Y axis
shows simulation time in seconds.

T CER Jitter at nd

0.015

|
-l

0,005

0 100 20 300 400 500

Figure(f) CBR Jitter at The Receiving Node (n3)
You might also check for more utilitiesin the Example
Utilities section.

This section showed an example of how to
generate traces in NS, how to interpret them, awd h
to get useful information out from the traces. hist
example, the post simulation processes are doae in
shell prompt after the simulation. However, these
processes can be included in the input OTcl script,
which is shown in the next section.

http: // www.ijesrt.com

section) and scheduling, however some of them are
for the NAM display. The "Simulator" object
member function implementations are located in the
"ns-2/tcl/lib/ns-lib.tcl" file.

1.$nscolor fid color: is to set color of the packets for
a flow specified by the flow id (fid). This member
function of "Simulator" object is for the NAM
display, and has no effect on the actual simulation
2.$ns namtrace-all file-descriptor: This member
function tells the simulator to record simulation
traces in NAM input format. It also gives the file
name that the trace will be written to later by the
command $ns flush-trace. Similarly, the member
function trace-all is for recording the simulatitvace

in a general format.
3.proc finish {}: is called after this simulation is over
by the command $ns at 5.0 "finish". In this funntio
post-simulation processes are specified.

4.set nO [$ns node]: The member function node
creates a node. A node in NS is compound object
made of address and port classifiers (describea in
later section). Users can create a node by separate
creating an address and a port classifier objeuds a
connecting them together. However, this member
function of Simulator object makes the job easier.
see how a node is created, look at the files: "ns-
2/tclllibs/ns-lib.tcl" and "ns-2/tcl/libs/ns-nodelt
5.$ns duplex-link nodel node2 bandwidth delay
gueue-type:. creates two simplex links of specified
bandwidth and delay, and connects the two specified
nodes. In NS, the output queue of a node is
implemented as a part of a link, therefore users
should specify the queue-type when creating lifks.

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

[Gobi, 2(5): May, 2013]

the above simulation script, DropTail queue is used
If the reader wants to use a RED queue, simply
replace the word DropTail with RED. The NS
implementation of a link is shown in a later seatio
Like a node, a link is a compound object, and users
can create its sub-objects and connect them and the
nodes. Link source codes can be found in "ns-
2/tclllibs/ns-lib.tcl" and "ns-2/tcl/libs/ns-linict’
files. One thing to note is that you can inserberr
modules in a link component to simulate a lossk lin
(actually users can make and insert any network
objects). Refer to the NS documentation to find out
how to do this
6.$ns queue-limit nodel node2 number: This line
sets the queue limit of the two simplex links that
connect nodel and node?2 to the number specified. At
this point, the authors do not know how many of
these kinds of member functions of Simulator olgject
are available and what they are. Please take adbok
"ns-2/tcl/libs/ns-lib.tcl* and "ns-2/tcl/libs/nsAk.tcl”,
or NS documentation for more information.
7.$ns duplex-link-op nodel node2 ... The next
couple of lines are used for the NAM display. Te se
the effects of these lines, users can comment these
lines out and try the simulation. Now that the basi
network setup is done, the next thing to do isctiois
traffic agents such as TCP and UDP, traffic sources
such as FTP and CBR, and attach them to nodes and
agents respectively.
8.set tcp [new Agent/TCP]: This line shows how to
create a TCP agent. But in general, users canecreat
any agent or traffic sources in this way. Agentd an
traffic sources are in fact basic objects (not
compound objects), mostly implemented in C++ and
linked to OTcl. Therefore, there are no specific
Simulator object member functions that create these
object instances. To create agents or traffic ssyra
user should know the class names these objects
(Agent/TCP, Agnet/TCPSink, Application/FTP and
so on). This information can be found in the NS
documentation or partly in this documentation. But
one shortcut is to look at the "ns-2/tcl/libs/ns-
default.tcl" file. This file contains the default
configurable parameter value settings for available
network objects. Therefore, it works as a good
indicator of what kind of network objects are
available in NS and what are the configurable
parameters.
9.$ns attach-agent node agent: The attach-agent
member function attaches an agent object creatad to
node object. Actually, what this function does &l c
the attach member function of specified node, which
attaches the given agent to itself. Therefore, & us
can do the same thing by, for example, $n0 attach
$tcp. Similarly, each agent object has a member
function attach-agent that attaches a traffic ssurc
http: // www.ijesrt.com

ISSN: 2277-9655

object to itself.

10.$ns connect agentl agent2: After two agents that
will communicate with each other are created, the
next thing is to establish a logical network cortizet
between them. This line establishes a network
connection by setting the destination address ¢t ea
others' network and port address pair. Assuming tha
all the network configuration is done, the nexnthi

to do is write a simulation scenario (i.e. simati
scheduling). The Simulator object has many
scheduling member functions. However, the one that
is mostly used is the following:

11.$ns at time " string": This member function of a
Simulator object makes the scheduler (scheduler_ is
the variable that points the scheduler object edkat
by [new Scheduler] command at the beginning of the
script) to schedule the execution of the specified
string at given simulation time. For examp$as at

0.1 "$cbr start" will make the scheduler call a start
member function of the CBR traffic source object,
which starts the CBR to transmit data. In NS, ugual

a traffic source does not transmit actual data,ibut
notifies the underlying agent that it has some arhou
of data to transmit, and the agent, just knowing ho
much of the data to transfer, creates packets and
sends them.

After all network configuration, scheduling
and post-simulation procedure specifications are
done, the only thing left is to run the simulatidinis
is done by$nsrun.

Design and I mplementation Constraints
Constraintsin Analysis
1.Constraints as Informal Text
2.Constraints as Operational Restrictions
3.Constraints Integrated in Existing Model
Concepts
4.Constraints as a Separate Concept
5.Constraints Implied by the Model Structure
Constraintsin Design
1.Determination of the Involved Classes
2.Determination of the Involved Objects
3.Determination of the Involved Actions
4.Determination of the Require Clauses
5.Global actions and Constraint Realization

External Interface Requirements
User Interfaces
1. Graphical User Interfaces not in this product.
2. Users are communicated with Buttons with
network animator.
Hardware Interfaces
Linux environment of system and basic need
of system feature like random access memory etc.

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

[Gobi, 2(5): May, 2013]

Software Interfaces

1.This software is interacted with the TCP/IP
protocol.

2.This product is interacted with the and linux

3.This product is interacted with the ServerSocket

4.This product is interacted with TCL

Perfor mance Requirements

The maximum satisfactory response time to
be experienced most of the time for each distiyje t
of user-computer interaction, along with a defomiti
of most of the time. Response time is measured from
the time that the user performs the action thas say
"Go" until the user receives enough feedback from
the computer to continue the task. It is the user's
subjective wait time. It is not from entry to a
subroutine until the first write statement. If theer
denies interest in response time and indicates that
only the result is of interest, you can ask whettem
times your current estimate of stand-alone exenutio
time" would be acceptable. If the answer is "yes,"
you can proceed to discuss throughput. Otherwise,
you can continue the discussion of response time
with the user's full attention. The response tifmat t
is minimally acceptable the rest of the time. Aden
response time can cause users to think the system i
down. You also need to specify rest of the time; fo
example, the peak minute of a day, 1 percent of
interactions. Response time degradations can be mor
costly or painful at a particular time of the day.

Ar chitecture of Node failure:

Figure(e) Architecture of nodefailure
Sequence Diagram:

‘:Data Cenrer‘ ‘ D] Mappmg‘ ‘ :Graph Isnmorghism‘ ‘ :02 Optimization ‘

| | |
| |
Degree Change
| — . |
Address Configurati Malfunction
m g } Without Degree Change
|
|
|
|
|
|
|
|
|

T
| |
| |
| |
| |
| |
| |
| |
| |
| |

server cunneclivitL: 02 Optimization 5

symmentric j
http: // www.ijesrt.com

e

ISSN: 2277-9655

Figure(g) Sequence diagram

Activity Diagram

Address Configuration

Physical Network
Topology

ID-Mapping

ion Detection
Handling

Malfunct
and

+—02 Optimization
N
Figure(h) Activity Diagram
System Design
Modules

a. Devicesto-Logical ID Mapping
b. Malfunction Detection
c. Simulation.
a. Devicesto-Logical ID Mapping

When the channel is built, the next step is to
collect the physical topology. For this, we introda
Physical topology Collection Protocol (PCP). In RCP
the physical topology information, i.e., the
connection information between each node is
propagated bottom—up from the leaf devices to the
root (i.e., DAC manager) layer by layer. After is
collected by DAC manager, we go to the device-to-
logical ID mapping module. Device-to-Logical ID
mapping after has been collected; we come to device
to-logical ID mapping, which is a key component of
DAC. As introduced in Section I, the challenge is
how to have the mapping reflect the topological
relationship of these devices. To this end, we sigvi
a fast one-to-one mapping engine, to realize this
functionality.
b. Malfunction Detection:

We consider and categorize three
malfunction types in data centers: node, link, and

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

[Gobi, 2(5): May, 2013]

miswiring. The first type occurs when a given serve

or switch breaks down from hardware or software
reasons, causing it to be completely unreachalde an
disconnected from the network. The second one
occurs when the cable or network card is broken or
not properly plugged in so that the connectivity

between devices on that link is lost. The third one
occurs when wired cables are different from theose i

the blueprint. These malfunctions may introduce
severe problems and downgrade the performance.

c¢. Simulation:

Our simulation results show that DAC can
accurately find all the hardest-to-detect malfusrsi
and can auto configure a large data center withelar
amount devices. In our implementation on a B Cube
test bed, DAC has used. To successfully auto
configure all the servers. Our implementation
experience and experiments show that DAC is a
viable solution for data center network auto
configuration. we focus on simulations on the mis-
wirings where there is no degree change. We ewaluat
the accuracy of our algorithm proposed in detecting
such malfunction.

Result & Conclusion
TCP Throughput Node and Link failure

1000 |

900 ;_SP‘J.'!;i.’y,;‘e*-{!{dEr._'}":lil"i_;‘;"\.':\)'.‘u':.ﬁf\'lJ_J‘_._\{'\}b,;.;6;. — e, &
L oo
&00 ¢ B
TOO H
800 Link failure
500 ¢

400 ¢

TCP Throwghput {Mb's)

800 ¢ Server shutdown

200 |

100 -

]

0 20 40 &0 a0 100. 120 140 180 180
Time (second)

Above Diagram shows that, the link failure occurs only

1-second throughput degdation, while the node failure

occur s a 5-second throughput outage that corresponds
to our link-state timeout value.

http: // www.ijesrt.com

ISSN: 2277-9655

Aggregate TCP Throughput

10 .
9.
_ 8 e D
z A
3 7
26
=
2 5!
£
% 41 . Tree
& 3
F
2|
1+
a
4] 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (secands)
The TCP throughput is recovered to the best
value after only a few seconds. second, our

implementation detects link failures much fastemth
node failure, because of using the medium sensing
cause queue to build up at each sender’s buffér. Al
TCP connections at a server the same sending buffer
on a network port. Therefore, all TCP connections
are slowed down, including those not traversing the
root switch. This results iin much smaller aggregat
TCP throughput.

Conclusion
The results provided within this paper
designed, evaluated, and implemented DAC, a

generic and automatic Data center Address
Configuration system. Our simulation results show
that DAC can accurately find all the hardest-toedet
malfunctions and can auto configure a large data
center . At the core of DAC is its device-to-loditia
mapping and malfunction detection. DAC has made
an innovation in abstracting the device-to-logilfal
mapping to the graph isomorphism problem and
solved it in low time complexity by leveraging the
sparsity and symmetry (or asymmetry) of data center
structures. Our implementation experience and
experiments show that DAC is a viable solution for
data center network auto configuration.

Acknowledgement

Thanks to Dr. T. Kiran Kumar, who
comforted me in various link failure(mis-wiring)
issues simulating this paper and also Mrs. s. &tuis
for her help in seeding me regarding the practical
implementation and its pros and cons. The insightfu
and detailed feedback and suggestion by them which
improved content and presentation of this paper.

(C) International Journal of Engineering Sciences & Research Technology

[1197-1206]

[Gobi, 2(5): May, 2013]

References

(1]

(2]

(3]
[4]

[5]

(6]

(8]

(9]

R. H. Katz, “Tech titans building boom,”
|[EEE Spectrum, vol. 46, no. 2, pp. 40-54,
Feb.2009.

L. Barroso, J. Dean, and U. Hodlzle,
“Websearch for a planet: The Google cluster
architecture,”|EEE Micro, vol. 23, no. 2,
pp.22-28, Mar. 2003.

R. Droms, “Dynamic host configuration
protocol,” RFC 2131, Mar. 1997

S. Ghemawat, H. Gobioff, and S.-T. Leung,
“The Google file system ,” ifProc. ACM
SOSP, 2003, pp. 29-43.

J. Dean and S. Ghemawat, “MapReduce:

Simplified data processing on large
clusters,” inProc. OSDI, 2004, pp. 137-150.
C. Guo, H.Wu,K.Tan,L. Shi,Y.Zhang, and
S. Lu, “DCell:Ascalable and fault tolerant
network structure for data centers,” in
Proc. ACM S GCOMM, 2008, pp. 75-86.

C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y.
Shi, C. Tian, Y. Zhang, and S. Lu, “BCube:
A high performance, server-centric
network architecture for modular data
centers,” inProc. ACM SGCOMM, 2009,
pp. 63-74.

R. N. Mysore, A. Pamboris, N. Farrington,
N. Subramanya, and A. Vahdat, “PortLand:
A scalable fault-tolerant layer 2 data
centernetwork fabric,” in Proc. ACM

S GCOMM, 2009, pp. 39-50.
A.Greenberg,N. Jain, S.Kandula, C. Kim, P.
Lahiri, D.Maltz, P. Patel, and S. Sengupta,
“VL2: A scalable and flexible data
centernetwork,” irProc. ACM S GCOMM,
2009, pp. 51-62.

[10] “Human errors most common reason for

http: // www.ijesrt.com

data center outages,” Oct. 2007 [Online].

ISSN: 2277-9655

(C) International Journal of Engineering Sciences & Research Technology
[1197-1206]

